Hydrophobic Modification of Bi2O3-Doped Si-Ti Composite Film on a Wood Surface

Author:

Liu Zhigao12ORCID,Gan Linshuang12,Cheng Si3,Fu Yunlin3,Wei Penglian3

Affiliation:

1. College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China

2. State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Nanning 530004, China

3. College of Forestry, Guangxi University, Nanning 530004, China

Abstract

In order to improve the hydrophobicity of the composite film on the wood surface, the wettability of the wood surface and its morphology, chemical structure, roughness and free energy changes were investigated in this paper after modification treatments with different volume fractions of octadecyltrichlorosilane (OTS) and polydimethylsiloxane (PDMS). It can be found that the water contact angle and surface roughness of the hydrophobically modified wood increased with the increase in volume fraction, but the overall effect of OTS hydrophobic modification was better than that of PDMS, and a maximum water contact angle of up to 140.8° could be obtained at a volume fraction of 2% of OTS. In addition, the intensity of the stretching vibration peak of -OH was weakened after the modification, while the intensity of the stretching vibration peak of -CH2- was enhanced, resulting in an increase in hydrophobicity. At the same time, it can be found that the surface free energy of the modified wood specimens was reduced, which shows that OTS and PDMS improve the surface hydrophobicity of the wood by increasing the surface roughness and decreasing the surface free energy together. Finally, the hydrophobically modified Bi2O3-doped silica–titanium composite film still possessed high photocatalytic degradation activity for rhodamine B and gas formaldehyde, and the degradation rate could reach more than 90%.

Funder

Special Fund of the National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3