Enhancement of Critical Current Density by Establishing a YBa2Cu3O7−x/LaAlO3/YBa2Cu3O7−x Quasi-Trilayer Architecture Using the Sol-Gel Method

Author:

Wu ChuanbaoORCID,Wang Yunwei

Abstract

We developed a solution-derived method to establish a YBa2Cu3O7−x/LaAlO3/YBa2Cu3O7−x quasi-trilayer architecture. Using the method, nano-scale pinning sites were induced into the quasi-trilayer architecture and yielded an apparent improvement in the in-field critical current density (Jc) of high-quality YBa2Cu3O7−x (YBCO). The improvement in the in-field Jc of the films was closely related to the thickness of the LaAlO3 (LAO) interlayer. In this paper it is demonstrated that when the nominal interlayer thickness approximates 20 nm, which is slightly higher than the roughness of the YBa2Cu3O7−x surface, the LaAlO3 interlayer is discontinuous due to synchromesh-like growth of the LaAlO3 layer on relatively rough YBa2Cu3O7−x surface resulting from the mobility of the solution. Nanoscale defects, such as particles, some amorphous phases, and especially their concomitant lattice defects (such as stacking faults and plane buckling) arise in YBa2Cu3O7−x layers. These nanoscale defects could play a role in flux pinning and thus enhancing Jc. The effective non-vacuum solution to induce vortex pinning into YBa2Cu3O7−x films could be a reference for the further design of an optimal pinning landscape for higher Jc.

Funder

Sichuan Provincial Key Laboratory of Comprehensive Utilization of Vanadium and Titanium Resources

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3