Activity of Fluoride Varnishes Containing Micrometric or Nanosized Sodium Trimetaphosphate against Early Enamel Erosive Lesions In Vitro

Author:

Báez-Quintero Liliana Carolina1,Pessan Juliano Pelim1ORCID,Nagata Mariana Emi2,Guisso Luigi Pedrini1,Delbem Alberto Carlos Botazzo1ORCID,Rios Daniela3,Sampaio Caio1ORCID,Hosida Thayse Yumi1

Affiliation:

1. Department of Preventive and Restorative Dentistry, School of Dentistry, São Paulo State University (UNESP), Araçatuba 16015-050, SP, Brazil

2. Department of Oral Medicine and Dentistry for Children, State University of Londrina, Londrina 86057-970, PR, Brazil

3. Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, São Paulo 17012-901, SP, Brazil

Abstract

This study aimed to assess the effects of fluoridated varnishes supplemented with micrometric or nanosized sodium trimetaphosphate (TMPmicro or TMPnano, respectively) against enamel softening in an early erosive model in vitro. Bovine enamel blocks (with mean surface hardness [SH] between 330.0 and 380.0 kgf/mm2) were selected and randomly assigned according to their SH (n = 8) into the following groups: Placebo (no fluoride/TMP; negative control), 5% NaF (positive control), 5% NaF + 5%TMPmicro, 5% NaF + 2.5%TMPnano and 5% NaF + 5%TMPnano. Blocks received a single application of the varnishes and were immersed in artificial saliva (6 h). Thereafter, the varnishes were removed and the blocks were subjected to four individual erosive challenges (1 min, citric acid, 0.75%, pH = 3.5, under agitation); SH was determined after each challenge. Data were subjected to ANOVA and Student–Newman–Keuls’ test (p < 0.05). Overall, the highest %SH loss was observed for the Placebo, followed by 5% NaF, 5% NaF + 5% TMPmicro, and both varnishes containing TMPnano, without significant differences between 2.5% and 5% TMPnano. It was concluded that TMP enhanced the effects of a 5% NaF varnish against enamel softening in an early erosive model in vitro, with an additional benefit from the use of nanoparticles over microparticles.

Funder

São Paulo State University

Coordination for the Improvement of Higher Education Personnel—CAPES

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3