Surface Modification of Metallic Nanoparticles for Targeting Drugs

Author:

Abdelkawi Abdullah1,Slim Aliyah1,Zinoune Zaineb1,Pathak Yashwant12ORCID

Affiliation:

1. Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA

2. Faculty of Pharmacy, Airlangga University, Surabaya 60115, Indonesia

Abstract

This review focuses on the surface modification of metallic nanoparticles for targeted drug delivery. Metallic nanoparticles, owing to their unique size, stability, and payload capacity, have emerged as promising drug carriers. However, their application necessitates surface modification to enable precise targeting. Various strategies, such as polymer coating methods, the use of functional groups, and bio-conjugation with targeting ligands, are explored. The review also discusses the selection of ligands based on target receptors, active and passive targeting approaches, and stimuli-responsive targeting. It further delves into the challenges of translating these strategies to clinical settings, including scalability, toxicity, and regulatory hurdles. The surface modification of metallic nanoparticles is a promising avenue for targeted drug delivery. Various strategies, including polymer coating, functionalization with specific groups, and bioconjugation with targeting ligands, have been explored to enhance the therapeutic potential of these nanoparticles. The challenges in clinical translation, continuous advancements in nanoparticle synthesis, and surface modification techniques offer a positive outlook for the future of targeted metallic nanoparticle systems. Despite the promising potential of metallic nanoparticles in drug delivery, there are several challenges that need to be addressed for their successful clinical translation. These include scalable fabrication and functionalization of nanoparticles, toxicity concerns, and regulatory hurdles. However, continuous advancements in nanoparticle synthesis and surface modification techniques are expected to overcome these challenges in the near future.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3