New 8-Hydroxyquinoline-Bearing Quinoxaline Derivatives as Effective Corrosion Inhibitors for Mild Steel in HCl: Electrochemical and Computational Investigations

Author:

Chaouiki Abdelkarim,Chafiq Maryam,Rbaa MohamedORCID,Lgaz HassaneORCID,Salghi Rachid,Lakhrissi Brahim,Ali Ismat H.ORCID,Masroor Sheerin,Cho YoungjaeORCID

Abstract

There has been substantial research undertaken on the role of green synthesized corrosion inhibitors as a substantial approach to inhibit the corrosion of metals and their alloys in acidic environments. Herein, electrochemical studies, surface characterization, and theoretical modeling were adopted to investigate the corrosion inhibition proprieties of novel synthesized quinoxaline derivatives bearing 8-Hydroxyquinoline, namely 1-((8-hydroxyquinolin-5-yl) methyl)-3,6-dimethylquinoxalin-2(1H)-one (Q1) and 1-((8-hydroxyquinolin-5-yl)methyl) quinoxalin-2(1H)-one (Q2) on mild steel corrosion in 1 mol/L HCl solution. The principal finding of this research was that both inhibitors acted as good corrosion inhibitors with Q1 having the highest performance (96% at 5 × 10−3 mol/L). Electrochemical results obtained via potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) techniques demonstrated that quinoxaline compounds belonged to mixed-type inhibitors; their presence significantly increased the polarization resistance, preventing simultaneously anodic and cathodic reactions. Further, experimental results provided preliminary insights about the interactions mode between studied molecules and the mild steel surface, which followed the Langmuir adsorption model, and physical and chemical interactions assisted their inhibition mechanism. Besides, SEM analyses confirmed the existence of protective film on the metal surface after the addition of 5 × 10−3 mol/L of quinoxalines. In addition, the temperature and immersion time effects on inhibition performances of quinoxalines were investigated to evaluate their performances in different operating conditions. Besides, Density Functional Theory (DFT) and molecular dynamics (MD) simulations were carried out to explore the most reactive sites of quinoxaline inhibitors and their interaction mechanism. Theoretical results revealed that the inhibitor molecule with additional electron-donating functional group strongly interacted with the steel surface.

Funder

King Khalid University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3