In Situ Preparation and Corrosion Resistance of a ZrO2 Film on a ZrB2 Ceramic

Author:

Yang HaitaoORCID,Zhang JianORCID,Li Junguo,Shen Qiang,Zhang Lianmeng

Abstract

ZrO2 films were in situ prepared using the anodic passivation of a ZrB2 ceramic in alkaline solutions. The composition and structure of the films were characterized using field-emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The corrosion resistances were evaluated in 0.1 M oxalate solution using the potentiodynamic polarization method (PDP) and the electrochemical impedance spectroscopy (EIS) technique. The results show that ZrO2 films can be prepared using anodization from −0.8 to 0.8 V standard hydrogen electrode (SHE) in 2–16 M NaOH solutions. During the anodization, the dehydration reaction of Zr(OH)4 to ZrO2 caused the volume shrinkage and tensile stress of the films. When the thickness of the films exceeded a critical value, the mud-cracking morphology occurred. The films without cracks exhibited the inhibition effect and provided effective corrosion protection in a 0.1 M H2C2O4 solution, which had a positive correlation with the film thickness. The film obtained when put in an 8 M NaOH solution (near the critical thickness) was found to significantly improve its corrosion resistance when put in a 0.1 M H2C2O4 solution by almost one order of magnitude compared with the bare ceramic.

Funder

The National Natural Science Fund of China

The 111 project of China

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3