Tailoring the Structural, Optical and Electrical Properties of Zinc Oxide Nanostructures by Zirconium Doping

Author:

Khan Asad ur RehmanORCID,Ramzan Muhammad,Imran Muhammad,Zubair Muhammad,Shahab SanaORCID,Ahmed Sara J.,Ferreira FábioORCID,Iqbal Muhammad FaisalORCID

Abstract

Owing to its low resistivity, high transmittance, and tunable optical band gap, ZnO is of great interest for optoelectronic applications. Herein, the sol–gel technique was used to synthesize un-doped and zirconium-doped zinc oxide (ZZO) nanostructures with different concentrations of Zirconium (Zr). X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, and photoluminescence (PL) measurements were used to investigate the influence of Zr doping on the structural, optical, and electrical properties of developed nanostructures. XRD and SEM confirmed the increase in crystallite size with increasing concentrations of Zr. Raman analysis indicated the presence of oxygen vacancies in synthesized nanostructures. UV-Vis spectroscopy illustrated the blue shift of band gap and red shift of the absorption edge for ZZO nanostructures with increasing concentrations of Zr. For the measurement of electrical properties, the spin-coating technique was used to deposit un-doped and Zr-doped ZnO layers of ~165 nm thickness. The four-probe-point (4PP) method illustrated that the doping of Zr caused a reduction in electrical resistance. Hall Effect measurements showed a high value, 3.78 × 1020 cm−3, of the carrier concentration and a low value, 10.2 cm2/Vs, of the carrier mobility for the Zr-doped layer. The high optical transmittance of ~80%, wide band gap of 3.51 eV, low electrical resistivity of 1.35 × 10−3 Ω·cm, and maximum carrier concentration of 3.78 × 1020 cm−3 make ZZO nanostructures one of the most promising candidates for the application of transparent conductive oxide (TCO) in optoelectronic devices.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3