Abstract
A robust superhydrophobic fabric coating was fabricated on cotton fabric under UV light, which was achieved by convenient surface modification with mercaptopropyltriethoxysilane, tetramethyltetravinylcyclotetrasiloxane, and octadecyl mercaptan. The modification of cotton fabric with 3-mercaptopropyltriethoxysilane introduces reactive mercapto groups, after which 2,4,6,8-tetramethyltetravinylcyclotetrasiloxane reacts with mercapto groups, and octadecyl mercaptan provides microscale roughness. The nonpolar carbon chains of thiol cause the cotton to have a low surface energy. As reported, the combination of microscale roughness with low surface energy has a superhydrophobic effect on cotton, which leads to a high contact angle of 161.8° and sliding angle of 8°. Infrared spectroscopy, XPS, and SEM tests were used to characterize the chemical structure and morphological changes of the surface of cotton fabric before and after click reaction. The fabric after click reaction exhibited an oil–water mixture separation ability owing to its superhydrophobicity. Thus, the finished fabric could be used in the oil–water separation field. Importantly, the superhydrophobic textile displays resistance to laundering, mechanical abrasion, strong acidic and alkaline environments, and UV irradiation. We hope that this study can broaden the real-life applications of cotton fabric.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献