Multi-Objective Optimization of Process Parameters in Laser DED Ni-Based Powder on Steel Rail Using Response Surface Design

Author:

Li Juncai123,Yang Yue12,Chen Liaoyuan12,Yu Tianbiao12,Zhao Ji12,Wang Zixuan12ORCID

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China

2. Liaoning Provincial Key Laboratory of High-End Equipment Intelligent Design and Manufacturing Technology, Shenyang 110819, China

3. Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University), Ministry of Education, Shenyang 110819, China

Abstract

With the rise of global industrialization, the requirements for the operating speed and carrying capacity of high-speed trains are increasingly higher. Because the wear and tear of rails gradually increases during the running of high-speed trains, strengthening or repairing rail surfaces is of paramount significance. Laser-directed energy deposition (DED) exhibits significant advantages in improving surface hardness, corrosion resistance, and abrasion resistance. Because of the multiple interacting optimization objectives, the development of a multi-objective optimization method for process parameters is significant for improving DED deposition quality. Response surface design employs multivariate quadratic regression equations to fit the functional relationship between the factors and the responses, which can be employed to find the optimal process parameters and solve multivariate problems. This study develops a multi-objective optimization model with response surface design and 2D process mappings to visually analyze the effects of scanning speed, laser power, and powder feed rate on aspect ratio, dilution rate, and microhardness. The optimal combination of process parameters for Ni-based alloys on U71Mn rail is a laser power of 431 W, a scanning speed of 5.34 mm/s, and a powder feed rate of 1.03 r/min. In addition, a multi-physics field finite element model is developed to analyze the evolution mechanism of the microstructure from the bottom to the top of the single track. This study can provide theoretical and technical support for the surface strengthening or repair of U71Mn rail.

Funder

National Natural Science Foundation of China

111Project

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3