Effect of a New Multi-Walled CNT (MWCNT) Type on the Strength and Elastic Properties of Cement-Based Mortar

Author:

Alexa-Stratulat Sergiu-Mihai1ORCID,Stoian George2ORCID,Ghemeş Iulian-Adrian2,Toma Ana-Maria1,Covatariu Daniel1ORCID,Toma Ionut-Ovidiu1ORCID

Affiliation:

1. Faculty of Civil Engineering and Building Services, The “Gheorghe Asachi” Technical University of Iasi, No. 1, Prof. dr.doc. D. Mangeron Street, 700050 Iasi, Romania

2. Magnetic Materials and Devices Department, National Institute of Research and Development for Technical Physics, No. 47, Prof. dr.doc. D. Mangeron Street, 700050 Iasi, Romania

Abstract

Creating new construction materials with improved strength, elasticity, and durability properties represent the focus of many research works. Significant research effort has been invested in investigating the use of carbon nanotubes (CNTs) in cementitious materials, especially multi-walled carbon nanotubes (MWCNTs) which consist of a series of concentric graphite tubes. The use of MWCNTs is closely related to the use of surfactants and ultra-sonication procedures which may alter their properties and the properties of cement-based materials. The paper presents the preliminary results of an experimental investigation on the suitability of using a new, modified, MWCNT type aimed at eliminating the need of using surfactants and ultrasonication. The modified MWCNTs have a much lower surface energy compared to “classical” ones which would result in a decreased tendency of self-aggregation. A comparison was carried out from the point of view of density, flexural and compressive strength as well as dynamic modulus of elasticity of the obtained mortars. The mortar mix incorporating the modified MWCNTs showed improved mechanical properties even for a low percentage of CNT addition (0.025% by mass of cement). The results are discussed based on the material structure determined from a series of scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses.

Funder

Technical University of Iasi

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3