Author:
Avramov Ivan,Radeva Ekatherina,Lazarov Yuliyan,Grakov Teodor,Vergov Lazar
Abstract
Plasma polymer films (PPF), widely used as sensing layers in surface acoustic wave (SAW) based gas and liquid phase sensors, have a major drawback: high concentrations of the sensed analytes easily drive these films into saturation, where accurate measurements are no longer possible. This work suggests a solution to this problem by modifying the PPF with the sensed chemical compound to improve the overall sorption properties and sensor dynamic range. Thin polymer films were synthesized from hexamethyldisiloxane (HMDSO) and triethylsilane (TES) monomers in a plasma-enhanced chemical vapor deposition (PECVD) process using a RF plasma reactor. We used these Si-containing compounds because they are known for their excellent sensing properties. In this work, the layers were deposited onto the active surface of high-Q 438 MHz Rayleigh SAW two-port resonators, used as mass sensitive sensor elements. We call these devices quartz surface microbalances (QSM). In a second step, ammonia plasma modification was applied to the HMDSO and TES films, in order to achieve a higher sensitivity to NH3. The sensors were probed at different NH3 gas concentrations in a computer controlled gas probing setup. A comparison with unmodified films revealed a 74% to 85% improvement in both the sensitivity and sorption ability of the HMDSO sensing layers, and of about 8% for the TES films.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献