A Review of Capacity Fade Mechanism and Promotion Strategies for Lithium Iron Phosphate Batteries

Author:

Hu Chen1,Geng Mengmeng1,Yang Haomiao1,Fan Maosong1,Sun Zhaoqin1,Yu Ran1,Wei Bin1

Affiliation:

1. China Electric Power Research Institute, Haidian District, Beijing 100192, China

Abstract

Commercialized lithium iron phosphate (LiFePO4) batteries have become mainstream energy storage batteries due to their incomparable advantages in safety, stability, and low cost. However, LiFePO4 (LFP) batteries still have the problems of capacity decline, poor low-temperature performance, etc. The problems are mainly caused by the following reasons: (1) the irreversible phase transition of LiFePO4; (2) the formation of the cathode–electrolyte interface (CEI) layer; (3) the dissolution of the iron elements; (4) the oxidative decomposition of the electrolyte; (5) the repeated growth and thickening of the solid–electrolyte interface (SEI) film on the anode electrode; (6) the structural deterioration of graphite anodes; (7) the growth of lithium dendrites. In order to eliminate the problems, methods such as the modification, doping, and coating of cathode materials, electrolyte design, and anode coating have been studied to effectively improve the electrochemical performance of LFP batteries. This review briefly describes the working principle of the LFP battery, the crystal structure of the LFP cathode material, and its electrochemical performance as a cathode. The performance degradation mechanism of LFP batteries is summarized in three aspects—cathode material, anode material, and electrolyte—and the research status of LFP material modification and electrolyte design is emphatically discussed. Finally, the challenges and future development of LFP batteries are prospected.

Funder

Science and Technology Foundation of State Grid Corporation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3