Principles of Machine Learning and Its Application to Thermal Barrier Coatings

Author:

Liu Yuan1,Chen Kuiying2,Kumar Amarnath1,Patnaik Prakash2

Affiliation:

1. TECSIS Corporation, Ottawa, ON K2E 7L5, Canada

2. Structures, Materials Performance Laboratory, Aerospace Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada

Abstract

Artificial intelligence (AI), machine learning (ML) and deep learning (DL) along with big data (BD) management are currently viable approaches that can significantly help gas turbine components’ design and development. Optimizing microstructures of hot section components such as thermal barrier coatings (TBCs) to improve their durability has long been a challenging task in the gas turbine industry. In this paper, a literature review on ML principles and its various associated algorithms was presented first and then followed by its application to investigate thermal conductivity of TBCs. This combined approach can help better understand the physics behind thermal conductivity, and on the other hand, can also boost the design of low thermal conductivity of the TBCs system in terms of microstructure–property relationships. Several ML models and algorithms such as support vector regression (SVR), Gaussian process regression (GPR) and convolution neural network and regression algorithms were used via Python. A large volume of thermal conductivity data was compiled and extracted from the literature for TBCs using PlotDigitizer software and then used to test and validate ML models. It was found that the test data were strongly associated with five key factors as identifiers. The prediction of thermal conductivity was performed using three approaches: polynomial regression, neural network (NN) and gradient boosting regression (GBR). The results suggest that NN using the BR model and GBR have better prediction capability.

Funder

Air Defence System Program of National Research Council Canada

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference169 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3