The Self-Catalyzed Growth of GaAsSb Nanowires on a Si (111) Substrate Using Molecular-Beam Epitaxy

Author:

Li Kexue1ORCID,Zhang Jian1,Tang Jilong1,Kang Yubin1,Lin Fengyuan1,Hou Xiaobing1,Wei Zhipeng1,Hao Qun12

Affiliation:

1. State Key Laboratory of High Power Semiconductor Lasers, College of Physics, Changchun University of Science and Technology, Changchun 130022, China

2. School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China

Abstract

GaAsSb semiconductor material, a ternary alloy, has long been recognized as a crucial semiconductor in the near infrared range due to its ability to finely adjust the wavelength through controlling the Sb component. In this work, we report on the pattern of orientation variation in self-catalyzed grown GaAsSb nanowires (NWs). Utilizing solid-source molecular-beam epitaxy (MBE), self-catalyzed GaAs and GaAsSb nanowires (NWs) were grown on Si (111) substrates. The influence of various Sb components on the growth direction of the nanowires in the ternary GaAsSb alloy was examined using scanning electron microscopy (SEM). The inclusion of Sb components was discovered to alter the growth direction of the nanowires, transitioning them from a vertical and inclined orientation to a configuration that encompassed vertical, inclined, and parallel orientations with respect to the Si (111) substrate. As the Sb component in GaAsSb increased, there was an increased likelihood of the nanowires growing parallel to the surface of the Si (111) substrate. A combination of X-ray diffraction (XRD) and Raman spectroscopy validated the presence of Sb components and indicated a high crystalline quality. Additionally, XRD confirmed that the Sb components aligned with the intended structure. These findings establish a solid material foundation for the development of high-performance GaAsSb-based devices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

“111” Project of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3