Microstructures and Mechanical Properties of Cu-Coated SiC Particles Reinforced AZ61 Alloy Composites

Author:

Dong Cuige,Wang Richu,Guo Suqing

Abstract

The pure Cu coating was plated on the surface of silicon carbide particles (SiCP) by two different methods, hydrazine hydrate direct reduction method and hydrazine with glucose pre-reduction method. The hydrazine with glucose pre-reduction method is more suitable for Cu plating on the surface of SiCP in terms of morphology and microstructure. AZ61 composites reinforced with different volume fractions (3~15%) uncoated and Cu-coated SiCP were prepared by powder metallurgy followed by hot extrusion. The effect of Cu coating on the morphology of SiCP/AZ61 composite was analyzed by optical microscope (OM), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), electronic probe micro-analyzer (EPMA) and X-ray diffractometer (XRD). The properties of the composite were characterized by Brinell hardness tester and mechanical testing machine. The effects of Cu coating on the micro-hardness, tensile strength and elongation of SiCP/AZ61 composite were analyzed. The tensile strength of AZ61 composite reinforced with Cu-coated SiCP increased by 3.5~6.3% and the elongation increased by 7.4~35.0% compared with AZ61 composite reinforced with uncoated SiCP. Therefore, the Cu coating can ameliorate the microstructure and properties of the SiCP/AZ61 composite effectively, reduce the defect rate in the composite, and improve the hardness, relative density, tensile strength, elongation of the composite.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3