Abstract
Designing a heterostructure photoanode with an appropriate band alignment, a beneficial charge migration pathway, and an adequate interfacial coupling is crucial for photoelectrochemical (PEC) energy conversion. Herein, we fabricate a hetero-nanostructure photoanode with CdS nanorods (CdS NRs) and two-dimensional (2D) ZnIn2S4 nanosheets (ZIS NSs) via a two-step in situ growth method on FTO glass to acquire a sufficient interfacial contact between two semiconductors. Based on their electronic band structures, the CdS is designed to be firstly grown on FTO to act as a photoelectron transport layer and 2D ZIS is further fabricated on the CdS as a photohole accumulation layer to directly contact the electrolyte. Benefitting from the Type II band alignment between the CdS and ZIS, such a heterostructure significantly enhances the separation efficiency and prolongs the lifetime of photocarriers. More importantly, it ensures that photoholes accumulate on the 2D ZIS with a highly exposed surface area for an oxidation reaction at the surface-active sites, while the photoelectrons transfer to counter electrode for hydrogen evolution. The optimum CdS@ZIS heterostructure photoanode exhibits a superior PEC performance with a photocurrent of 4.19 mA/cm2 at 1.23 VRHE (two times that of the CdS and eight times that of ZIS) and an applied bias photo-to-current efficiency (ABPE) of 1.93% at 0.49 VRHE. This work can inspire the future design of heterostructure photoanodes for highly efficient solar energy conversion.
Funder
NSF of China
National College Students Innovation and Entrepreneurship Training Program of China
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces