Functionally Gradient Coatings from HfC/ HfTaC2 to Ti: Growth Process, Basic Mechanical Properties and Wear Behavior

Author:

Li Jingli,Miao Qiang,Liang Wenping,Liu Ruixiang,Zhao Hui,Sun Jingjia,Zhang Jing,Zang Kai,Xu Jianyan,Yao Wei,Tao XiaomaORCID,Liu Mingguang

Abstract

HfC and HfTaC2 coatings with gradient composition manufactured by double-cathode glow discharge plasma surface metallurgy technology were designed to improve the wear resistance of TA15 titanium alloy. The deposition mechanism of plasma and diffusion mechanism of atoms were investigated, and the growth process of coatings was revealed. The mechanical properties comprising microhardness and elastic modulus were investigated via first-principles calculations and experimental verification. The results reveal that the wear resistance of HfC and HfTaC2 coatings with abrasive wear mechanism is always better than that of the substrate with abrasive wear, adhesive wear and oxidation wear mechanism. The volume wear rates of the coatings are reduced by 90%–97% compared with the substrate, and that of HfTaC2 coatings are reduced by 29.9%–45.5% compared with HfC coatings. Furthermore, V-shaped cross section profiles of wear scars formed on HfC coatings, and U-shaped on HfTaC2 coatings, which is attributed to the addition of tantalum which causes HfC to form a sufficient solid solution, a 0.187–0.030 Å elongation of Ta-C bond length and 0.039–0.051 Å shortening of Hf-C bond length led to the unit cell shrinkage and the Bragg lattice changes from face-centered cubic to face-centered square lattice; accordingly, hardness and wear behavior were further improved.

Funder

National Major Science and Technology Projects of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3