Microstructural Changes in Suspension Plasma-Sprayed TBCs Deposited on Complex Geometry Substrates

Author:

Uczak de Goes WellingtonORCID,Markocsan Nicolaie,Gupta MohitORCID

Abstract

Thermal barrier coatings (TBCs) are considered a promising solution for improving the efficiency of internal combustion engines. Among the thermal spray processes, the relatively newly developed suspension plasma spray (SPS) is an attractive candidate due to its unique microstructural features that have already demonstrated increased performance in gas turbine applications. To achieve these features, thermal spray conditions play an essential role. In specific uses, such as piston of diesel engines, parameters as spray angle and spray distance pose challenges to keep them constant during the whole spray process due to the complex geometry of the piston. To understand the effect of the spray distance and spray angle, a comprehensive investigation of the produced thermal spray microstructure on the piston geometry was conducted. Flat and complex geometry surfaces were coated using the same plasma parameters while the spray angle and distance were changed. Characterization was performed using scanning electron microscopy (SEM) combined with the image analysis technique to perceive the variation of the thickness and microstructures features such as pores, cracks, column density, and column orientation. The results showed that the changes in spray angles and spray distances due to the complex shape of the substrate have a significant influence on the microstructure and thermal properties (thermal conductivity and thermal effusivity) of the coatings. The thermal conductivity and thermal effusivity were calculated by modeling for the different regions of the piston and measured by laser flash analysis combined with modeling for the flat-surfaced coupon. It was shown that the modeling approach is an effective tool to predict the thermal properties and thus to understand the influence of the parameters on the coating properties. Connecting the observations of the work on the microstructural and thermal properties, the complex geometry’s influence on the produced coatings could be diminished by tailoring the process and generating the most desirable TBC for the internal combustion engines in future applications.

Funder

Energimyndigheten

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference53 articles.

1. Thermal barrier coatings for aircraft engines: history and directions

2. Performance Increases for Gas-Turbine Engines Through Combustion Inside the Turbine

3. Experimental Measurements on the Effect of Insulated Pistons on Engine Performance and Heat Transfer;Tree,1996

4. Injection Characteristics that Improve Performance of Ceramic Coated Diesel Engines;Kamo,1999

5. Effectiveness of Plasma Sprayed Coatings for Engine Combustion Chamber;Mendera,2000

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3