Microstructure and Wear-Resistant Properties of Ni80Al20-MoS2 Composite Coating on Sled Track Slippers

Author:

Wang Weihua,Xie Faqin,Wu Xiangqing,Zhu Zheng,Wang Shaoqing,Lv Tao

Abstract

In order to increase the surface hardness and wear-resistance property of sled track slippers, a Ni80Al20-MoS2 composite coating was fabricated on the surface of a stainless steel 0Cr18Ni9Ti sled track slipper via atmospheric spray and hot dipping. The microstructure, composition and surface hardness of coatings under different spraying powers were characterized and measured. The wear-resistant properties of the slipper substrate and the coating were also checked. The results showed that the higher the spraying power was, the greater the smoothness, density and hardness was of the Ni80Al20 coating, while the thickness initially increased and then decreased. When the spraying power was 18 kW, the thickness was 342.5 μm, the surface hardness was 304.1 Hv0.2, and the coating was composed of Ni, Al, Ni3Al, NiAl and a little Al2O3. The friction coefficient of the slipper substrate against GCr15 balls at room temperature in air was 0.7, while the coated substrate with MoS2 lubrication film was 0.3 and the volume wear rate declined by 1/5. The friction coefficient of the Ni80Al20 coating was 0.5 and the Ni80Al20-MoS2 composite coating was 0.15, while the volume wear rate declined by 1/4 and 1/3.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference24 articles.

1. An evaluation of high velocity wear

2. Evaluation of Flow and Failure Properties of Treated 4130 Steel

3. Finite Element Simulation Methods for Dry Sliding Wearhttps://pdfs.semanticscholar.org/6363/d1d178f628b5bcf181997afd02552a69d0b7.pdf

4. A Finite Element Study of Sliding Friction between Rough Surfaceshttps://ecommons.udayton.edu/cgi/viewcontent.cgi?article=2855&context=graduate_theses

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3