Data-Driven Optimization of Plasma Electrolytic Oxidation (PEO) Coatings with Explainable Artificial Intelligence Insights

Author:

Fernández-López Patricia1ORCID,Alves Sofia A.1,Rogov Aleksey23ORCID,Yerokhin Aleksey23,Quintana Iban1,Duo Aitor4,Aguirre-Ortuzar Aitor4ORCID

Affiliation:

1. Plasma Coatings Technologies Unit, Tekniker, Parke Teknologikoa, C/Iñaki Goenaga, 5, 20600 Eibar, Spain

2. Department of Materials, University of Manchester, Oxford Road, Manchester M12 9PL, UK

3. Henry Royce Institute, University of Manchester, Manchester M12 9PL, UK

4. Faculty of Engineering, Mondragon Unibertsitatea, Loramendi 4, 20500 Arrasate-Mondragon, Spain

Abstract

PEO constitutes a promising surface technology for the development of protective and functional ceramic coatings on lightweight alloys. Despite its interesting advantages, including enhanced wear and corrosion resistances and eco-friendliness, the industrial implementation of PEO technology is limited by its relatively high energy consumption. This study explores the development and optimization of novel PEO processes by means of machine learning (ML) to improve the coating thickness. For this purpose, ML models random forest and XGBoost were employed to predict the thickness of the developed PEO coatings based on the key process variables (frequency, current density, and electrolyte composition). The predictive performance was significantly improved by including the composition of the used electrolyte in the models. Furthermore, Shapley values identified the pulse frequency and the TiO2 concentration in the electrolyte as the most influential variables, with higher values leading to increased coating thickness. The residual analysis revealed a certain heteroscedasticity, which suggests the need for additional samples with high thickness to improve the accuracy of the model. This study reveals the potential of artificial intelligence (AI)-driven optimization in PEO processes, which could pave the way for more efficient and cost-effective industrial applications. The findings achieved further emphasize the significance of integrating interactions between variables, such as frequency and TiO2 concentration, into the design of processing operations.

Funder

Basque Country Government

UK EPSRC

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3