Fabrication and Properties of Superhydrophobic Colored Stainless Steel Surface for Decoration and Anti-Corrosion

Author:

Fan Changfeng1,Wang Xue12,Wang Wei1,Meng Dechao1,Zhan Xianghua1,Yin Xiaoli1,Liu Yancong3

Affiliation:

1. Shandong Institute of Petroleum and Chemical Technology, Dongying 257061, China

2. College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China

3. College of Mechanical and Electronic Engineering, China University of Petroleum, Qingdao 266580, China

Abstract

A colored superhydrophobic surface on a stainless steel substrate was achieved by means of high temperature oxidation combined with subsequent spraying modification by superhydrophobic nano-silica film. Comprehensive characterizations of the surface were performed in terms of color, morphology, composition, wettability, and corrosion resistance by optical microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), contact angle, potentiodynamic polarization, and electrochemical impedance spectroscopy measurement. At 400 °C, the surface was pale yellow, gradually turning yellow and then red as the temperature increased. At 700 °C and 800 °C, the surface colors were blue and dark brown, respectively. The samples with oxide films demonstrated lower contact angles, specifically 80.5° ± 2.5 at 400 °C, 79.1° ± 2.8 at 500 °C, and 75.6° ± 3.4 at 600 °C. The polarization resistance measured on the oxidized film formed at 600 °C exceeded 7.93 × 104 Ω·cm2. After spraying the treatment, these colorful surfaces exhibited superhydrophobicity, they were self-cleaning, and they satisfied anti-corrosion properties. The treatment performs as an excellent barrier and exhibits a high corrosion resistance of 4.68 × 106 Ω·cm2. The successful preparation of superhydrophobic colored surfaces offers the possibility of providing stainless steel with both decoration value and self-cleaning function simultaneously by our proposed chromium-free fabrication process.

Funder

Dongying Science Development Fund

Dongying Major Science and Technology Innovation Project

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3