Investigation of the Surface Properties and Wear Properties of AISI H11 Steel Treated by Auxiliary Heating Plasma Nitriding

Author:

Yan Hongzhi,Zhao Linhe,Chen Zhi,Hu Xuan,Yan Zhaojun

Abstract

This paper presents an auxiliary heating method to maintain a uniform specimen temperature and precisely control nitriding temperature during plasma nitriding. The surface properties and wear properties of AISI H11 steel treated by auxiliary heating plasma nitriding are investigated. Firstly, the specimens with different diffusion layers and different hardness levels are fabricated through changing the plasma nitriding temperature. Secondly, the surface properties of the plasma-nitrided H11 steel specimens are characterized by a scanning electron microscope (SEM), X-ray diffractometer, metallographic microscope and microhardness tester. The results show that the surface hardness of the plasma-nitrided specimen is almost twice as high as that of the untreated specimen. The thickness of diffusion layer increases with the increase of nitriding temperature. However, the surface hardness firstly increases and then decreases with the increase of the nitriding temperature. Finally, the wear properties of untreated and plasma-nitrided H11 steel specimens are investigated under different friction conditions. The results show that the plasma-nitriding method can significantly improve the wear resistance of AISI H11 steel. The friction coefficient fluctuations of the plasma-nitrided specimens are all lower than those of the untreated specimens. In addition, the wear rates of the plasma-nitrided specimens rise along with load, and reduce along with the sliding speed and friction temperature.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3