Prospects of Low-Pressure Cold Spray for Superhydrophobic Coatings

Author:

Gibas AnnaORCID,Baszczuk AgnieszkaORCID,Jasiorski Marek,Winnicki Marcin

Abstract

A major challenge in materials engineering is the development of new materials and methods and/or novel combination of existing ones, all fostering innovation. For that reason, this study aims at the synergy between low-pressure cold spray (LPCS) as a tool for coating deposition and sol-gel technique for fabrication of the feedstock powder. The complementarity of both methods is important for the examined topic. On one side, the LPCS being automized and quick mean provides the solid-state of feedstock material in nondestructive conditions and hence the hydrophobicity imparted on the sol-gel route is preserved. On the other side, the sol-gel synthesis enables the production of oxide materials with enhanced deformability due to amorphous form which supports the anchoring while LPCS spraying. In the paper, several aspects including optimal fluoroalkylsilane (FOTS) concentration or substrate roughness are examined initially for altering the superhydrophobicity of produced coatings. Further, it is shown that the appropriate optimization of feedstock powder, being submicron silica matrices covered with two-layer FOTS sheath, may facilitate the anchoring process, support roughening the substrate or cause enhancement the coating hydrophobicity. All the discussion is supported by the characteristics including surface morphology, wettability and thermal behaviour examined by electron microscopy, water contact angle measurements and thermal analysis (TGA/DSC), respectively. The coatings presented in the paper are characterized by an uneven thickness of up to a few silica particles, but final hydrophobicity is provided uniformly on the surface by the formation of multi-level roughness by a detachment of outer layer from the SiO2 particles. Thus, the presented approach constitutes a simple and fast solution for the fabrication of functionalized coatings using LPCS including industrial potential and fundamental research character.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3