Corrosion Behavior of the 2024 Aluminum Alloy in the Atmospheric Environment of the South China Sea Islands

Author:

Zhao Jing1,Zhao Tongjun2,Zhang Yazhou2,Zhang Zhongtian2,Chen Zehao2,Wang Jinlong2ORCID,Chen Minghui2ORCID

Affiliation:

1. Nuclear Power Institute of China, Chengdu 528208, China

2. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China

Abstract

The 2024 aluminum alloy, a structural material commonly used in aviation aircraft bodies, is susceptible to serious corrosion in marine atmospheric environments. This paper comprehensively studies the corrosion behavior of the 2024 aluminum alloy in the South China Sea atmosphere. Weighing, morphology observation, phase analysis, electrochemical testing, and other methods were used to study the corrosion law and corrosion mechanism of the 2024 aluminum alloy. The main conclusions are as follows: At the initial stage of exposure, pitting corrosion occurred on the surface of the 2024 aluminum alloy. After 3 months of exposure, the self-corrosion current density increased from 0.456 μA·cm−2 to 8.338 μA·cm−2. After 6 months of exposure, the corrosion developed into general corrosion. The main component of the corrosion product was Al2O3·3H2O. The product covered the surface to form a loose corrosion product layer, which had an inhibitory effect on corrosion. The self-corrosion current density was reduced to 2.359 μA·cm−2. After 12 months of exposure, the corrosion product layer fell off and became thinner, and the self-corrosion current density increased to 2.849 μA·cm−2. The corrosion kinetics conformed to the functional equation W = 0.00346t0.73891, indicating that the corrosion products have a certain protective effect on the matrix.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Ministry of Industry and Information Technology Project

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3