Multi-Elemental Coatings on Zirconium Alloy for Corrosion Resistance Improvement

Author:

Sartowska Bożena,Starosta Wojciech,Waliś Lech,Smolik JerzyORCID,Pańczyk Ewa

Abstract

Zirconium alloys are commonly used as a cladding material for fuel elements in nuclear reactors. This application is connected with zirconium alloy’s good resistance to water corrosion and radiation resistance under normal working conditions. In the case of severe accident conditions, the possibly very fast oxidation of zirconium alloys in steam or/and air atmosphere may result in the intense generation of hydrogen and explosion of the hydrogen oxide mixture. The development of a solution to minimize the aforementioned risk is of interest. One of the actual concepts is to improve the oxidation resistance of Zr alloy cladding with protective coatings. This study aimed to develop, form, and investigate new coatings for zirconium alloy Zry-2. Multi-elemental Physical Vapour Deposition (PVD) coatings with Cr, Si, and Zr were considered for Institute of Nuclear Chemistry and Technology) INCT as corrosion protective coatings for nuclear fuel claddings. Heat treatment at 850–1100 °C/argon, air oxidation processes at 700 °C/1–5 h, and a long-term corrosion test in standard conditions for Pressure Water Reactor (PWR) reactors (360 °C/195 bar/water simulating the water used in PWR) were carried out. Initial, modified, and oxidized materials were characterized with Scanning Electron Microscopy (SEM) (morphology observations), Energy Dispersive Spectroscopy (EDS) (elemental composition determination), and X-ray Diffraction (XRD) (phase composition analysis). Slower oxidation processes and a smaller oxidation rate, in the case of modified material investigations, were observed, as compared with the unmodified material. The obtained results displayed a protective character against the oxidation of formed layers in the defined range of parameters in the process.

Funder

International Atomic Energy Agency

Polish Ministry of Science and Education

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference30 articles.

1. Materials challenges for nuclear systems

2. Novel accident-tolerant fuel meat and cladding;Mariani;Proceedings of the LWR Fuel Performance Meeting, Top Fuel 2013,2013

3. Corrosion of zirconium alloys;Allen,2012

4. Protective coatings on zirconium-based alloys as accident-tolerant fuel (ATF) claddings

5. Assessment at CEA of Coated Nuclear Fuel Cladding for LWRs with Increased Margins in LOCA and beyond LOCA Conditions;Idarraga-Trujillo;Proceedings of the Top Fuels 2013,2013

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3