Aging of Solvent-Casting PLA-Mg Hydrophobic Films: Impact on Bacterial Adhesion and Viability

Author:

Luque-Agudo Verónica,Romero-Guzmán Daniel,Fernández-Grajera María,González-Martín M. Luisa,Gallardo-Moreno Amparo M.

Abstract

Biomaterials used for the manufacture of biomedical devices must have suitable surface properties avoiding bacterial colonization and/or proliferation. Most biomaterial-related infections start during the surgery. Bacteria can begin colonization of the surface of a device right after implantation or in the next few hours. This time may also be sufficient to begin the deterioration of a biodegradable implant. This work explores the surface changes that hydrophobic films of poly(lactic) acid reinforced with Mg particles, prepared by solving-casting, undergone after in vitro degradation at different times. Hydrophobicity, surface tension, zeta potential, topography, and elemental composition were obtained from new and aged films. The initial degradation for 4 h was combined with unspecific bacterial adhesion and viability tests to check if degraded films are more or less susceptible to be contaminated. The degradation of the films decreases their hydrophobicity and causes the appearance of a biocompatible layer, composed mainly of magnesium phosphate. The release of Mg2+ is very acute at the beginning of the degradation process, and such positive charges may favor the electrostatic approach and attachment of Staphylococci. However, all bacteria attached on the films containing Mg particles appeared damaged, ensuring the bacteriostatic effect of these films, even after the first hours of their degradation.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3