Improvement in the Wear Resistance under Dry Friction of Electrodeposited Fe-W Coatings through Heat Treatments

Author:

Mulone Antonio,Nicolenco Aliona,Imaz Naroa,Martinez-Nogues Vanesa,Tsyntsaru Natalia,Cesiulis Henrikas,Klement UtaORCID

Abstract

The influence of the microstructural transformations upon heat treatments on the wear resistance of Fe-W coatings is studied. The coatings are electrodeposited from a glycolate-citrate plating bath with 24 at.% of W, and the wear resistance is investigated under dry friction conditions using ball-on-disc sliding tests. The samples were annealed in Ar atmosphere at different temperatures up to 800 °C. The microstructural transformations were studied by means of X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Electron Backscattered Diffraction (EBSD) technique. Except for the coating annealed at 800 °C, all the tested coatings suffered severe tribo-oxidation which resulted in the formation of deep cracks, i.e., ~15 μm in depth, within the wear track. The precipitation of the secondary phases, i.e., Fe2W and FeWO4, on the surface of the sample annealed at 800 °C increased the resistance to tribo-oxidation leading to wear tracks with an average depth of ~3 μm. Hence, the Fe-W coating annealed at 800 °C was characterized with a higher wear resistance resulting in a wear rate comparable to electrodeposited hard chromium coatings, i.e., 3 and 4 × 10−6 mm3/N m, respectively.

Funder

Horizon 2020 research and innovation programme

Research Council of Lithuania

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3