Optimized Strain Response in (Co0.5Nb0.5)4+-Doped 76Bi0.5Na0.5TiO3-24SrTiO3 Relaxors

Author:

Li Hui1,Gao Jingxia1,Li Mingyang1,Zhang Qingfeng2,Zhang Yangyang1

Affiliation:

1. Engineering Department, Huanghe Science and Technology College, Zhengzhou 450006, China

2. School of Materials Science & Engineering, Hubei University, Wuhan 430062, China

Abstract

High strain with low hysteresis is crucial for commercial applications in high precision actuators. However, the clear conflict between the high strain and low hysteresis in BNT-based ceramics has long been an obstacle to actual precise actuating or positioning applications. To obtain piezoceramics with high strain and low hysteresis, it is necessary to enhance the electrostrictive effect and develop an ergodic relaxor (ER) and nonergodic relaxor (NR) phase boundary under ambient conditions. In this work, (Co0.5Nb0.5)4+ doped 76Bi0.5Na0.5TiO3-24SrTiO3 (BNST24) relaxors were fabricated using the conventional solid state reaction route. X-ray diffraction patterns revealed the B-site substitution in BNST24 ceramics. By adjusting the (Co0.5Nb0.5)4+ doping in BNST24, we effectively tuned the TNR-ER and Td close to ambient temperature, which contributed to the development of the ergodic relaxor phase and enhanced the electrostrictive effect at ambient temperature. The I-P-E loops and bipolar strain curves verified the gradual evolution from NR to ER states, while the enhanced electrostrictive effect was verified by the nearly linear S-P2 curves and improved electrostrictive coefficient of the BNST24-xCN relaxors. An enhanced strain of 0.34% (d*33 = 483 pm/V) with low hysteresis of 8.9% was simultaneously achieved in the BNST24-0.02CN relaxors. The enhanced strain was mainly attributed to the proximity effect at the ER and NR phase boundary of BNST24-0.02CN, while the improved electrostrictive effect contributed to the reduced strain hysteresis. Our work demonstrates an effective strategy for balancing the paradox of high strain and low hysteresis in piezoceramics.

Funder

Postgraduate Education Reform and Quality Improvement Project of Henan Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3