Ultra-Sensitive Biosensor with Simultaneous Detection (of Cancer and Diabetes) and Analysis of Deformation Effects on Dielectric Rods in Optical Microstructure

Author:

Chupradit SupatORCID,Ashfaq Shameen,Bokov DmitryORCID,Suksatan WanichORCID,Jalil Abduladheem TurkiORCID,Alanazi Amer M.ORCID,Sillanpaa MikaORCID

Abstract

This study proposes a refractive index sensor for the simultaneous detection of cancer and diabetes based on photonic crystals (PhC). The proposed PhC composed of silicon rods in the air bed arranged in a hexagonal lattice forms the fundamental structure. Two tubes are used to place the cancerous or diabetic samples for measurement. The sensor’s transmission characteristics are simulated and analyzed by solving Maxwell’s electromagnetic equations using the finite-difference time-domain approach for samples being studied. Therefore, diabetes and cancer are detected according to the changes in the refractive index of the samples using the laser source centered at 1550 nm. Considering the findings, the sensor’s geometry changes to adjust the suggested sensitivity and quality factor of structure. According to the results, transmission power ranges between 91 and 100% based on the sample. Moreover, sensitivity ranges from 1294 to 3080 nm/RIU and the maximum Figure of Mertie is nearly FOM = 1550.11 ± 150.11 RIU−1 with the detection in range 31 × 10−6 RIU. In addition, the small area (61.56 μm2) of biosensor results in its appropriateness for different uses in compact photonic integrated circuits. Next, we changed the shape of the dielectric rods and investigated their effects on the sensitivity parameter. The sensitivity and figure of merit after changes in the shape of dielectric rods and nanocavities are at best S = 20,393 nm/RIU and FOM = 9104.017 ± 606.93 RIU−1, receptively. In addition, the resolution detection range is 203.93 × 10−6 RIU.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3