Structural and Electrochemical Properties of Scandia Alumina Stabilized Zirconia Thin Films

Author:

Sriubas MantasORCID,Virbukas Darius,Kainbayev NursultanORCID,Bockute Kristina,Laukaitis Giedrius

Abstract

This work presents a systematic investigation of scandia alumina stabilized zirconia (ScAlSZ, composition: ZrO2:Sc2O3:Al2O3 93:6:1 wt.%) thin films (~2 μm). Thin films were formed by the e-beam evaporation method on 450 °C substrates. The influence of Al concentration on thin film microstructure, structure, and electrochemical properties was characterized by EDS, XRD, Raman, and EIS methods. It was found that the aluminum concentration in the deposited thin films decreased with an increase in the deposition rate. The concentration of Al changed from 15.9 to 3.8 at.% when the deposition rates were 0.2 and 1.6 nm/s, respectively. The crystallinity of the thin films depended strongly on the concentration of Al, resulting in an amorphous phase when Al concentration was 22.2 at.% and a crystalline phase when Al concentration was lower. ScAlSZ thin films containing 15.9 at.% of Al had monoclinic and tetragonal phases, while thin films with 1.6 and 3.8 at.% of Al had a mixture of cubic, tetragonal, and monoclinic phases. The phase transition was observed during the thermal annealing process. Cubic and rhombohedral phases formed in addition to monoclinic and tetragonal phases appeared after annealing ScAlSZ thin films containing 15.9 and 22.2 at.% of aluminum. The highest total ionic conductivity (σbulk = 2.89 Sm−1 at 800 °C) was achieved for ScAlSZ thin films containing 3.8 at.% of Al. However, thin films containing a higher concentration of aluminum had more than 10 times lower total conductivity and demonstrated changes in activation energy at high temperatures (>560 °C). Activation energies changed from ~1.10 to ~1.85 eV.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3