Prickly Pear Fruit Extract: Capping Agent for the Sol–Gel Synthesis of Discrete Titanium Dioxide Nanoparticles and Sensitizer for Dye-Sensitized Solar Cell

Author:

Rajendhiran Radhika1,Atchudan Raji2ORCID,Palanisamy Jayabal1ORCID,Balasankar Athinarayanan1ORCID,Oh Tae Hwan2ORCID,Deivasigamani Venugopal1,Ramasundaram Subramaniyan2

Affiliation:

1. Department of Physics, Gobi Arts & Science College, Gobichettipalayam, Erode 638 543, Tamil Nadu, India

2. School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea

Abstract

Plant extracts have been utilized as an ecofriendly natural reducing agent for the synthesis of nanomaterials, including metal oxides. Prickly pear (opuntia) fruit extract (PPE) was used as a reducing agent for the sol–gel synthesis of titanium dioxide nanoparticles (TiO2 NPs) and as a sensitizer for the TiO2 NPs photoanode used in dye-sensitized solar cells (DSSCs). Ultraviolet-visible and infrared spectra, X-ray diffraction patterns, and scanning electron microscopic images were confirmed in the formation of semiconducting TiO2 NPs with the predominate size of ~300 nm. The use of PPE rendered discrete TiO2 NPs, whereas the typical synthesis without PPE resulted TiO2 aggregates. TiO2 NPs had a tetragonal crystalline structure, and their grain size was varied with respect to the concentration of PPE. The size of TiO2 crystallites was found to be 20, 19, 15, and 10 nm when the volume percentage of PPE was 0.2, 0.4, 0.6, and 0.8%, respectively. TiO2 NPs obtained using PPE were coated on indium-doped tin oxide substrates and sensitized with natural dye made up of PPE and synthetic dyes, namely rose Bengal (RB) and eosin yellow (EY). The photoanode fabricated with dye-sensitized TiO2 NPs was subjected to current–voltage response studies. The maximum power-conversion efficiency, 1.4%, was recorded for photoanodes sensitized with PPE dye, which is considerably higher than that for RB (1.16%) or EY (0.8%). Overall, the above findings proved that PPE can be used as a potential reducing/capping agent and TiO2 sensitizer for DSSC applications.

Funder

DST Gov. of India for the Common Instrumentation facility under the FIST grant

National Research Foundation of Korea (NRF) grant funded by the Korea government

Korea Basic Science Institute (National research Facilities and Equipment Center) grant funded by the Ministry of Education

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3