Fabrication and Characterization of P-Type Semiconducting Copper Oxide-Based Thin-Film Photoelectrodes for Solar Water Splitting

Author:

Chang Chih-Jui,Lai Chih-Wei,Jiang Wei-Cheng,Li Yi-Syuan,Choi Changsik,Yu Hsin-Chieh,Chen Shean-Jen,Choi YongManORCID

Abstract

Solar light-driven hydrogen by photocatalytic water splitting over a semiconductor photoelectrode has been considered a promising green energy carrier. P-type semiconducting copper oxides (Cu2O and CuO) have attracted remarkable attention as an efficient photocathode for photoelectrochemical (PEC) water splitting because of their high solar absorptivity and optical band gaps. In this study, CuO thin films were prepared using the sol-gel spin coating method to investigate the effects of aging time and layer dependency. Electrodeposition was also applied to fabricate Cu2O thin films. Cu2O thin films annealed at 300 °C are a hetero-phase system composed of Cu2O and CuO, while those at 400 °C are fully oxidized to CuO. Thin films are characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), ultraviolet-visible spectroscopy (UV-VIS), Fourier transform infrared spectroscopy (FTIR), spectroscopic ellipsometry (SE), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman microscopy. The hetero-phase thin films increase the photoconversion efficiency compared to Cu2O. Fully oxidized thin films annealed at 400 °C exhibit a higher efficiency than the hetero-phase thin film. We also verified that CuO thin films fabricated using electrodeposition show slightly higher efficiency than the spin coating method. The highest photocurrent of 1.1 mA/cm2 at 0.10 V versus RHE was measured for the fully oxidized CuO thin film under one-sun AM1.5G illumination. This study demonstrates a practical method to fabricate durable thin films with efficient optical and photocatalytic properties.

Funder

the Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3