Abstract
Recently, a significant number of research projects have been directed towards designing and developing ceramic coatings for zirconium-based substrates due to their outstanding surface properties and utilization in modern technologies. The plasma electrolytic oxidation (PEO) coating is an environmentally friendly wet coating method that can be performed in a wide range of electrolytes. The surface characteristics of PEO coatings can be tailored by changing electrochemical parameters, electrolyte composition, and substrate alloying elements to adopt a conformal and adhesive PEO ceramic coating for the final demanding applications in chemical, electronics, and energy technologies. This review focuses on deriving a deeper fundamental understanding of the PEO growth mechanisms and the effect of process parameters on transient discharge behavior at breakdown, initiation, and growth of the oxide layer and incorporating species from the electrolyte. It highlights the fundamental microstructural properties associated with structural defects, phase transformation, and the role of additives.
Funder
National Science Foundation
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献