Analysis of Wear Vibration Behavior of Micro-Textured Coated Cemented Carbide Considering High-Order Scale

Author:

Tong Xin12,Wang Shoumeng12

Affiliation:

1. School of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin 150080, China

2. Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China

Abstract

In order to explore the influence of high-order micro-texture parameters on the friction, wear, and vibration characteristics of coated cemented carbide pin surfaces, expand the research field of textured coating modification processes. Firstly, a laser was used to prepare micro-texture on the surface of the cemented carbide pin, and AlCrN coating was carried out. The friction and wear test platform of the micro-textured physical vapor deposition (PVD)-coated cemented carbide and titanium alloy substrate was built, and the friction vibration and acoustic vibration signals were obtained as the main analysis media. Secondly, according to the characteristics of the test signal, three time-frequency images are analyzed and compared. The continuous wavelet transform (CWT) method with a better time-frequency analysis effect is selected. Finally, the characteristics and regularity of friction vibration and acoustic vibration are analyzed by using the gray mean of the CWT time-frequency image. The influence mechanism of high-order micro-texture parameters on the surface characteristics of coated cemented carbide pins was obtained. It is concluded that the high-order micro-texture is 1.58% higher than the traditional scale in the stability of friction vibration, 4.47% higher in the stability of acoustic vibration, and 13.16% lower in the friction force, which proves the progress of the size improvement. It provides a practical basis for the extension research of cemented carbide surface modification.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3