Study of PVD-Coated Inserts’ Lifetime in High-Pressure Die Casting Regarding the Requirements for Surface Quality of Castings

Author:

Sütőová Andrea1ORCID,Kočiško Róbert1,Petroušek Patrik1ORCID,Kotus Martin2,Petryshynets Ivan3,Pylypenko Andrii4ORCID

Affiliation:

1. Faculty of Materials, Metallurgy and Recycling, Institute of Materials and Quality Engineering, Technical University of Kosice, 040 01 Kosice, Slovakia

2. Faculty of Engineering, Institute of Design and Engineering Technologies, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia

3. Institute of Materials Research of Slovak Academy of Sciences, 040 01 Kosice, Slovakia

4. Faculty of Materials, Metallurgy and Recycling, Institute of Metallurgy, Technical University of Kosice, 040 01 Kosice, Slovakia

Abstract

The wear and degradation of tools applied in the high-pressure die casting of Al alloys induce significant financial losses. The formation of failures on the surface of mold parts caused by erosion, thermal fatigue, corrosion, and soldering negatively affects the surface quality of castings. In this study, the lifetime of inserts protected by physical-vapor-deposited coatings (TiN, TiAlN, and CrAlSiN) is examined under real manufacturing conditions while considering requirements for the castings’ surface quality (maximum average roughness Ra) defined by the customer. The goal was to identify the most suitable solution for HPDC in the foundry organization. After the deposition of PVD coatings on the inserts, the hardness (HRC) values increased from two to five depending on the coating used, and also the surface roughness was higher in the case of all inserts (Ra values increased from 0.24 to 0.36 µm). The lifetime of all PVD-coated inserts was higher compared to the uncoated insert. The highest lifetime was achieved by the application of a TiN coating, when 15,000 shots were achieved until the inserts’ wear negatively affected (increased) the surface roughness of castings, considering the customer requirements for the maximum Ra value. SEM analysis was used to identify examples of wear and degradation on the surface of the TiN coated insert.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3