Microstructure and Mechanical Properties of Carbide Reinforced TiC-Based Ultra-High Temperature Ceramics: A Review

Author:

Mao Haobo,Shen Fuqiang,Zhang YingyiORCID,Wang Jie,Cui Kunkun,Wang Hong,Lv Tao,Fu Tao,Tan Tianbiao

Abstract

TiC ceramics have become one of the most potential ultra-high temperature structural materials, because of its high melting point, low density, and low price. However, the poor mechanical properties seriously limit its development and application. In this work, this review follows PRISMA standards, the mechanism of the second phase (particles, whiskers, and carbon nanotubes) reinforced TiC ceramics was reviewed. In addition, the effects of the second phase on the microstructure, phase composition and mechanical properties of TiC ceramics were systematically studied. The addition of carbon black effectively eliminates the residual TiO2 in the matrix, and the bending strength of the matrix is effectively improved by the strengthening bond formed between TiC; SiC particles effectively inhibit the grain growth through pinning, the obvious crack deflection phenomenon is found in the micrograph; The smaller grain size of WC plays a dispersion strengthening role in the matrix and makes the matrix uniformly refined, and the addition of WC forms (Ti, W) C solid solution, WC has a solid solution strengthening effect on the matrix; SiC whiskers effectively improve the fracture toughness of the matrix through bridging and pulling out, the microscopic diagram and mechanism diagram of SiC whisker action process are shown in this paper. The effect of new material carbon nanotubes on the matrix is also discussed; the bridging effect of CNTs can effectively improve the strength of the matrix, during sintering, some CNTs were partially expanded into GNR, in the process of crack bridging and propagation, more fracture energy is consumed by flake GNR. Finally, the existing problems of TiC-based composites are pointed out, and the future development direction is prospected.

Funder

the Anhui Province Science Foundation for Excellent Young Scholars

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3