Influence of DETA on Thermal and Corrosion Protection Properties of GPTMS-TEOS Hybrid Coatings on Q215 Steel

Author:

Yang Shuanqiang1ORCID,Jia Zhenzhen2,Xu Jinjia3ORCID,Hong Ruoyu2ORCID

Affiliation:

1. Institute of Industrial Technology, Fujian Jiangxia University, Fuzhou 350108, China

2. College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China

3. Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, MO 63121, USA

Abstract

High-performance coating could be used to protect steels in engineering. The GPTMS-TEOS hybrid coatings were successfully prepared using (3-glycidoxypropyl) trimethoxysilane (GPTMS) and tetraethylorthosilicate (TEOS) as reaction raw materials and diethylenetriamine (DETA) as both a curing agent and catalyst at room temperature. The hybrid coating contained amorphous SiO2 and was characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The DETA content of the hybrid coating has a significant impact on the performance of the coating. As the DETA content increases, the thermal stability of the hybrid coating increases at 400–600 °C due to the production of more SiO2 in the amine-rich state. However, the gelation time decreases dramatically, preventing the hybrid coating from better infiltrating the surface of the steel substrate. In addition, there are not enough silicon hydroxyl groups to bond with the hydroxyl groups on the surface of carbon steel and adhesion is significantly reduced. Therefore, hybrid coatings with a moderate DETA content (NH:epoxy ratio equivalent to 1:1) show the best corrosion resistance, with a third-order magnitude increase in corrosion resistance compared to that of carbon steel.

Funder

National Natural Science Foundation of China

Minjiang Scholarship of Fujian Province

Central Government-Guided Fund for Local Economic Development

R&D Fund for Strategic Emerging Industry of Fujian Province

Analytical Testing Fund of Qingyuan Innovation Laboratory of Fujian Province

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3