Friction Coefficient Dynamics of Tribological Coatings from Engine Lubricants: Analysis and Interpretation

Author:

Domínguez García Saúl1ORCID,Béjar Gómez Luis1,Maya Yescas Rafael2ORCID,Lara Romero Javier2,Castro Cedeño Baltazar2,Espinosa Medina Marco Antonio1ORCID

Affiliation:

1. Facultad de Ingeniería Mecánica, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico

2. Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Mexico

Abstract

Even today, there is no full understanding of the relationship between the physical, chemical, and mechanical properties and the behavior of the lubricating films formed in tribological systems. Most of the published scientific research measures and reports the overall values of friction and wear, but the information given via statistical signals in the tribological tests is, in general, dismissed, leaving a hole in the study of the dynamics of tribological systems. In this work, an experimental study of statistical friction data, coating characteristics, and tribological performance is carried out using a pin-on-disk tribometer to test some metallic samples coated with lubricant films under several experimental conditions. The results indicate that long deposition times at high deposition temperatures of coatings from engine oil develop low-friction intervals, which fall until 20% of the uncoated coefficient friction. However, an unexpected and unfavorable behavior of the coatings was observed for the short deposition times and high temperature. In these conditions, the developed friction profiles reached a maximum level of friction that was 20% more than the uncoated coefficient friction. Moreover, it was found that the proper analysis and interpretation of the statistical data, in combination with the characterization of the coatings, describes the dynamics of the interactions between the bodies in contact and reveals the transitions of the surfaces with non-homogeneous properties throughout their depth.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3