In Situ Reduction of Silver Nanoparticles on the Plasma-Induced Chitosan Grafted Polylactic Acid Nonwoven Fabrics for Improvement of Antibacterial Activity

Author:

Ren Yu,Fan Tingyue,Wang Xiaona,Guan Yongyin,Zhou Long,Cui Li,Li Meixian,Zhang GuangyuORCID

Abstract

An eco-friendly approach for improvement of antibacterial properties of polylactic acid (PLA) nonwoven fabrics was obtained by in situ reduction of silver nanoparticles (Ag NPs) on dielectric barrier discharge (DBD) plasma-induced chitosan grafted (DBD-CS-Ag NPs) PLA nonwoven fabrics. The surface morphology, surface element composition and the chemical state of silver of the PLA surfaces after the treatment were evaluated through scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), respectively. The antibacterial activity of DBD-CS-Ag NPs treated PLA against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was tested. The uniform dispersion of silver nanoparticles on the DBD-CS-Ag NPs treated PLA surface were confirmed by SEM images. The results of XPS and XRD showed that the concentration of silver element on the surface of PLA nonwoven fabrics was significantly improved after DBD-CS-Ag NPs treatment. The DBD-CS-Ag NPs treated PLA nonwoven fabrics also exhibited excellent antibacterial properties.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3