Author:
Ni Zhongjin,Cao Xiaohai,Wang Xinyi,Zhou Shiyu,Zhang Caixia,Xu Bin,Ni Yihua
Abstract
In this thesis, Cu2O nanochains were synthesized by thermal decomposition with copper formate-octylamine as the precursor, oleic acid and oleylamine as the catalyst stabilizer agent and paraffin as the solvent. The phase structure and micromorphology of Cu2O nanochains were characterized by X-ray diffraction and transmission electron microscopy. The effect of reaction time and concentration of the precursor on the Cu2O nanochains were discussed, and the formation mechanism of the Cu2O nanochains was analyzed. The results show that Cu2O nanochains were self-assembled by Cu2O nanocrystals; with the extension of the reaction time, Cu2O nanochains gradually become granular; increasing the concentration of the precursor will increase the entanglement degree of the nanochains. Oleic acid contributes to the formation of Cu2O, and oleylamine plays a directional role in the formation of nanochains. On the basis of those phenomenon, a comparison of the Cu2O nanochain-water nanofluids with that of a water-based liquid showed that after irradiating for 3000 s, the temperature of nanofluids reached 91.1 °C while the water was only 75.7 °C. This demonstrates the better performance of the Cu2O nanochain-water nanofluid in the ability of light absorption, thermal conductivity and photothermal conversion.
Funder
Planning Project of Application Research for Public Service Technology of Zhejiang Province
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献