An In-Depth Analysis of CdTe Thin-Film Deposition on Ultra-Thin Glass Substrates via Close-Spaced Sublimation (CSS)

Author:

Amin NowshadORCID,Karim Mohammad RezaulORCID,ALOthman Zeid AbdullahORCID

Abstract

This study evaluated the impact of the deposition pressure on the formation of cadmium telluride (CdTe) thin films on ultra-thin (100 µm) Schott glass substrate at high temperature (T > 450 °C) by Close-Spaced Sublimation (CSS) technique. CdTe thin films were grown under the pressure range of 1 Torr to 200 Torr to explore the impact of deposition pressure on CdTe thin-film properties. The microstructural, compositional and optoelectrical characteristics were examined. X-ray Diffraction (XRD) analysis revealed the cubic phase crystallite CdTe films with (111) preferential orientation. Scanning Electron Microscopy (SEM) demonstrated that the CdTe morphology and grain size could be regulated via the deposition pressure, whereby maximum grain growth was detected at low pressure (1–5 Torr). The thickness of CdTe films was reduced from 6 µm to 1.5 µm with the rise in deposition pressure. Moreover, the optical direct energy gap was derived in the range of 1.65–1.69 eV for the pressure value of 200 Torr to 1 Torr. Carrier density and resistivity were found to be in the order of 1013 cm−3 and 104 Ω cm, respectively. The experimental results suggest that the pressure range of 1–5 Torr may be ideal for CSS-grown CdTe films on flexible ultra-thin glass (UTG) substrates.

Funder

King Abdulaziz City for Science and Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3