A Study of the Optical Properties and Fabrication of Coatings Made of Three-Dimensional Photonic Glass

Author:

Huang Chih-LingORCID

Abstract

Photonic crystals employ optical properties based on optical, physical, chemical, and material science. Nanosilica particles have a high specific surface area and are widely used in nanotechnology research and biomedical applications. In this study, nanosilica particles were fabricated by sol–gel methods, and the particle sizes of the silica nanoparticles were 280, 232, and 187 nm, based on dynamic light scattering. The silica nanoparticle suspension solution was heated to boiling for fast evaporation processing for self-assembly to fabricate three-dimensional photonic glass for structural color coatings. The sample had an adjustable structural color (red: 640 nm, green: 532 nm, and blue: 432 nm). The microstructures of various structure-colored samples were arranged, but there was a disordered solid arrangement of silica nanoparticles. These were not perfect opal-based photonic crystals. Compared to opal-based photonic crystals, the arrangement of silica nanoparticles was a glassy structure with a short-range order. Due to the accumulation of silica nanoparticle aggregates, samples displayed a stable colloidal film, independent of the viewing angle. In our study, the fast solvent evaporation in the self-assembly process led to the formation of a colloidal amorphous array, and it fitted the requirement for non-iridescence. Non-iridescent photonic glass with various colors was obtained. This type of color coating has wide potential applications, including reflective displays, colorimetric sensors, textiles, and buildings.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3