Enhanced Anticorrosion Properties through Structured Particle Design of Waterborne Epoxy-Styrene-Acrylate Composite Emulsion

Author:

Zhang Kai,Chen Xifang,Xiao Yuling,Liu Rujia,Liu Jie

Abstract

In order to develop a waterborne epoxy-styrene–acrylate composite latex with a better stability and anticorrosion resistance, a novel synthetic approach has been proposed. First, modified by methyl acrylic, epoxy resin containing terminal C=C double bonds was successfully synthesized, where epoxide groups were partially retained. Then, by structural design and multi-stage seed emulsion copolymerization, a stable waterborne epoxy-styrene-acrylate composite latex composed of a modified epoxy resin acrylate polymer as the core, inert polystyrene ester as the intermediate layer, and carboxyl acrylate polymer as the shell was successfully fabricated. The structure of the obtained latex was characterized by fourier transform infrared (FTIR) and transmission electron microscopy (TEM). The stability of the composite latex was tested based on the wet gel weight, Zeta potential, and storage stability, and the corrosion resistance of the composite latex films was analyzed by electrochemical measurements and salt spray tests. The thickness of each layer of the composite latex was calculated by the temperature random multi-frequency modulation DSC (TOPEM-DSC) technique. In addition to the successful emulsion copolymerization that occurred between the modified epoxy resin and acrylate monomer, the presence of carboxyl groups in the obtained latex was evidenced, while the epoxide groups were partially retained. The anticorrosion resistance and stability of the multilayer composite latex with the intermediate layer are better than that of the conventional core-shell latex. The outstanding stability and corrosion resistance is attributed to the multilayer core-shell structure. The TOPEM-DSC approach can accurately determine the thickness of the intermediate layer in the multilayer core-shell particles and is a new strategy for characterizing the core-shell structure of polymer particles with a similar monomer composition.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3