Electrochemical Dealloying Preparation and Morphology Evolution of Nanoporous Au with Enhanced SERS Activity

Author:

Li Fei1,Luo Silang23,Qu Fengsheng2,Wang Dou2,Li Chao3,Liu Xue2ORCID

Affiliation:

1. School of Mechatronics and Rail Transportation, Zhejiang Fashion Institute of Technology, Ningbo 315211, China

2. Institute of Materials, China Academy of Engineering Physics, Mianyang 621908, China

3. School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China

Abstract

Nanoporous Au (NPG) prepared by dealloying is one of the most used substrates for surface-enhanced Raman scattering (SERS). The morphology tailoring of the NPG to obtain both ultrafine pores and suitable Au/Ag ratio is of great importance for the acquiring of enhanced SERS performance. Compared with the chemical dealloying, the electrochemical dealloying can tailor the NPG to be more flexible by the additional adjustment of dealloying voltage and current. Thus, further understanding on the morphology evolution of NPG during the electrochemical dealloying to obtain enhanced SERS performance is of great importance. In the presented work, the morphology and composition evolution of the NPG film during the electrochemical dealloying was investigated. NPG films with a stable pore diameter of approximately 11 nm as well as diverse compositions were obtained by electrochemical dealloying an Au-Ag alloy film. The prepared NPG film exhibits an enhanced SERS activity with an enhancement factor (EF) of 7.3 × 106 and an excellent detection limit of 10−9 M. This work provides insights into the morphology and composition evolution of the NPG during the electrochemical dealloying process to obtain enhanced SERS performance.

Funder

National Natural Science Foundation of China

Science and Technology on Surface Physics and Chemistry Laboratory Fund

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3