Superhydrophobic Epoxy/Fluorosilicone/PTFE Coatings Prepared by One-Step Spraying for Enhanced Anti-Icing Performance

Author:

Fan Lei12,Li Bo1,Wang Yan3,He Jinhang1,Bai Jie1,Zhu Tao2,Yuan Yuan2

Affiliation:

1. Institute of Electric Power Science of Guizhou Power Grid Co., Ltd., Guiyang 550005, China

2. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China

3. Guiyang Power Supply Bureau of Guizhou Power Grid Co., Ltd., Guiyang 550001, China

Abstract

The icing of glass insulators is likely to cause faults such as insulator flashover, which poses a serious threat to the power system. Traditional deicing techniques have the disadvantage of being costly and inefficient. Herein, polytetrafluoroethylenes (PTFEs) as nanoparticles and epoxy and fluorosilicone resins as binders were blended to construct an anti-icing coating. The superhydrophobic (SHP) epoxy/fluorosilicone/PTFE coatings for anti-icing were successfully prepared on glass slides through one-step spraying. The effect of PTFE mass fraction on the microstructure, on the wettability and on the anti-icing properties of the coatings was investigated. The results showed that the coatings with different PTFE mass fractions had different microstructures. When the PTFE mass fraction was 47.2%, the SHP coating exhibited a uniform rough structure with an apparent contact angle as high as 164.7° and a sliding angle as low as 3.2°. Moreover, the water droplets can bounce back five times with a contact time of only 9.5 ms and a rebound height of 4.58 mm. In the low-temperature environment (−10 °C), the SHP coating displayed good anti-frosting, anti-icing and icephobic properties. The delayed frosting time (1499 s) and delayed freezing time (1295.3 s) of the SHP coating were three and five times longer than those of the glass, respectively. The SHP coating presented an ice-adhesion strength (39.8 kPa) that was six times lower than that of glass. The prepared SHP coating demonstrated potential applications for the anti-icing of glass insulators.

Funder

Electric Power Research Institute of Guizhou Power Grid Co., Ltd., China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3