Microstructure and Mechanical Properties of ZrCuSiN Coatings Deposited by a Single Alloy Target

Author:

Yoon Hae Won,Shin Seung Yong,Kwon Se Hun,Moon Kyoung Il

Abstract

Recently, research has been conducted on nanocomposite thin films containing new additive elements in ZrN. In this paper, a method for depositing ZrCuSiN nanocomposite coatings using a ZrCuSi single target is presented. The ZrCuSi target that was used to easily deposit a ZrCuSiN coating in a mixed gas atmosphere (Ar + N2) was produced by a simple arc melting method (casting process). The effect of the nitrogen content was investigated by depositing a ZrCuSiN coating using alloy targets at various nitrogen gas flow rates (2, 4, 6, and 8 sccm). X-ray diffraction analysis of the ZrCuSiN coatings revealed a ZrN structure with a preferable orientation (200). As the nitrogen flow rate increased, the formation of o-Zr3N4 was dominant in the ZrN formation. A nitrogen gas flow rate of 4 sccm produced a coating with optimal ZrN and a-Si3N4 coordination and maximum hardness (41 GPa). Reciprocal friction tests of all coatings and uncoated carburized SCM415 steel in a 5W30 lubrication atmosphere demonstrated that the 4 sccm coating had the lowest friction coefficient (0.002). Therefore, our method has the potential to be an alternative surface coating technique for materials used in automotive engine parts and various other wear protection applications.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3