Effects of the Ethyne Flow Ratio on Structures and Mechanical Properties of Reactive High Power Impulse Magnetron Sputtering Deposited Chromium-Carbon Films

Author:

Kuo Chin-Chiuan,Chang Shu-Ping

Abstract

Chromium-carbon films were deposited by utilizing reactive high-power impulse magnetron sputtering with different mixture ratios of ethyne and argon with a constant deposition total pressure while the deposition temperature, pulse frequency, duty cycle and average power of the chromium cathode remain the same. The microstructure and chemical bonding of the obtained films within different composition were compared. The results show that with the increasing ethyne ratio, the carbon content in films increases linearly with two slopes. Moreover, the microstructure of the deposited film changes from a dense glassy structure into a columnar structure, even a clusters structure. The sp2-C bonding in films decreases but the Cr–C bonding increases with decreasing the ethyne ratio. This reveals the main phase of films changes from a hydrogenated amorphous carbon phase into a glassy amorphous chromium carbide phase. Such changes of the microstructure and phase cause a large difference on the film hardness and elasticity.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3