Application of Mineralized Chitosan Scaffolds in Bone Tissue Engineering

Author:

Li Yiyuan1,Meng Yufeng2,Wang Yuning1ORCID,Wang Yun1,Wang Zuolin1

Affiliation:

1. Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China

2. Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials University of Science and Technology of China, Hefei 230026, China

Abstract

Chitosan (CS) is a natural cationic polysaccharide obtained via the N-deacetylation of chitin. It has various outstanding biological properties such as nontoxicity, biodegradability, biocompatibility, and antimicrobial properties. Minerals can be deposited on the CS template using different methods to construct composites with structures and functions similar to those of natural bone tissue. These ideal scaffolds can produce bone via osteogenesis, osteoinduction, and osteoconduction, with good biocompatibility and mechanical properties, and are thus considered promising novel biomaterials for repairing hard tissue defects. In the last decade, the field of mineralized CS scaffolds has provided novel fundamental knowledge and techniques to better understand the aforementioned fascinating phenomenon. This study mainly focused on the basic structures and properties of mineralized CS scaffolds to understand the current research progress and explore further development. Further, it summarizes the types, preparation methods, components, properties, and applications of mineralized CS scaffolds in bone tissue engineering during the last 5 years. The defects and shortcomings of the scaffolds are discussed, and possible improvement measures are put forward. We aimed to provide complete research progress on mineralized CS scaffolds in bone tissue engineering for researchers and clinicians, and also ideas for the next generation of mineralized CS scaffolds.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3