Improving Surface Antimicrobial Performance by Coating Homogeneous PDA-Ag Micro–Nano Particles

Author:

Wang Shuilin12,Meng Fanping3,Cao Zhimin1

Affiliation:

1. Institute of Intelligent Manufacturing and Smart Transportation, Suzhou City University, Suzhou 215104, China

2. Xuhai College, China University of Mining and Technology, Xuzhou 221008, China

3. Henan Energy HR Group Co., Ltd., Zhengzhou 450008, China

Abstract

Implants and other medical devices are prone to bacterial infections on their surface due to bacterial attachment and biofilm formation. In this study, silver nanoparticles were generated in situ onto regulated synthesized polydopamine particles, and the optimal amount of silver nitrate was determined. Composite micro–nano particles were then deposited on a titanium alloy surface. X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy were used to confirm that the titanium alloy surface was successfully coated with PDA-Ag. Scanning electron microscopy, transmission electron microscopy, and three-dimensional optical profilometry were utilized to analysis the morphology of the micro–nano particles and the surface morphology after deposition. The diameters of the polydopamine particles and silver nanoparticles were 150 nm and 25 nm, respectively. The surface roughness values decreased from 0.357 μm to 25.253 μm because of the coated PDA-Ag. Morphology and chemical composition analyses of the modified surface indicated that the PDA-Ag particles were uniformly bonded to the substrate surface. Antimicrobial assays illustrated that the PDA-Ag-modified surface possessed resistance against Escherichia coli and Staphylococcus aureus attachment, with an effectiveness of 96.14 and 85.78%, respectively. This work provides a new strategy and theoretical basis for tackling medical-related surface infections caused by bacterial adhesion.

Funder

“Qing Lan Project” in Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3