Effect of β-Estradiol on Mono- and Mixed-Species Biofilms of Human Commensal Bacteria Lactobacillus paracasei AK508 and Micrococcus luteus C01 on Different Model Surfaces

Author:

Kiseleva Anastasia A.,Solovyeva Tatiana V.,Ovcharova Maria A.,Geras’kina Olga V.,Mart’yanov Sergey V.,Cherdyntseva Tatiana A.,Danilova Natalya D.,Zhurina Marina V.,Botchkova Ekaterina A.,Feofanov Alexey V.ORCID,Plakunov Vladimir K.,Gannesen Andrei V.ORCID

Abstract

The impact of steroid hormones, and particularly estradiol, on human microbiota could be recognized as a substantial part of human-microbiota interactions. However, an area that remains poorly investigated is that of the skin and vaginal microbial communities and biofilms, which contain non-pathogenic bacteria of phyla Firmicutes and Actinobacteria, especially probiotic bacteria of the genus Lactobacillus and the widespread, safe skin genus, Micrococcus. Experiments with Lactobacillus paracasei AK508 and Micrococcus luteus C01 biofilms on PTFE cubes showed dose-dependent effects of estradiol at concentrations of 0.22 nM and 22 nM. The hormone mostly inhibits L. paracasei growth and stimulates M. luteus. The presented studies of colony-forming unit (CFU) amountsand cell aggregation in biofilms on glass fiber filters showed the same general tendencies. Estradiol generally increased the aggregation of cells in monospecies communities and potentially changed the synthesis of antibacterial metabolites in L. paracasei. The balance between two bacteria in mixed-species biofilms depended on the initial adhesion stage, and when this stage was reduced, micrococci were more resistant to the antagonistic action of L. paracasei. Moreover, in mixed-species biofilms, the effect of estradiol on lactobacilli altered from inhibition to stimulation, potentially due to the presence of M. luteus. At the same time, ethanol as a solvent for estradiol at the concentration 0.6% acted mostly as an antagonist of the hormone and had an opposite effect on bacteria; nevertheless, the overlapping of ethanol and estradiol effects was shown to be minimal. The data obtained prove the complexity of microbial interactions and the regulatory effect of estradiol on commensal bacteria biofilms.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3